Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Sci Rep ; 13(1): 9049, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270642

RESUMO

Breast cancer is the most common type of cancer worldwide. Diagnosing breast cancer relies on clinical examination, imaging and biopsy. A core-needle biopsy enables a morphological and biochemical characterization of the cancer and is considered the gold standard for breast cancer diagnosis. A histopathological examination uses high-resolution microscopes with outstanding contrast in the 2D plane, but the spatial resolution in the third, Z-direction, is reduced. In the present paper, we propose two high-resolution table-top systems for phase-contrast X-ray tomography of soft-tissue samples. The first system implements a classical Talbot-Lau interferometer and allows to perform ex-vivo imaging of human breast samples with a voxel size of 5.57 µm. The second system with a comparable voxel size relies on a Sigray MAAST X-ray source with structured anode. For the first time, we demonstrate the applicability of the latter to perform X-ray imaging of human breast specimens with ductal carcinoma in-situ. We assessed image quality of both setups and compared it to histology. We showed that both setups made it possible to target internal features of breast specimens with better resolution and contrast than previously achieved, demonstrating that grating-based phase-contrast X-ray CT could be a complementary tool for clinical histopathology.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Raios X , Radiografia , Neoplasias da Mama/diagnóstico por imagem , Interferometria/métodos , Tomografia por Raios X
2.
Phys Med Biol ; 67(7)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35213843

RESUMO

The purpose of this work was to develop a hybrid column generation (CG) and simulated annealing (SA) algorithm for direct aperture optimization (H-DAO) and to show its effectiveness in generating high quality treatment plans for intensity modulated radiation therapy (IMRT) and mixed photon-electron beam radiotherapy (MBRT). The H-DAO overcomes limitations of the CG-DAO with two features improving aperture selection (branch-feature) and enabling aperture shape changes during optimization (SA-feature). The H-DAO algorithm iteratively adds apertures to the plan. At each iteration, a branch is created for each field provided. First, each branch determines the most promising aperture of its assigned field and adds it to a copy of the current apertures. Afterwards, the apertures of each branch undergo an MU-weight optimization followed by an SA-based simultaneous shape and MU-weight optimization and a second MU-weight optimization. The next H-DAO iteration continues the branch with the lowest objective function value. IMRT and MBRT treatment plans for an academic, a brain and a head and neck case generated using the CG-DAO and H-DAO were compared. For every investigated case and both IMRT and MBRT, the H-DAO leads to a faster convergence of the objective function value with number of apertures compared to the CG-DAO. In particular, the H-DAO needs about half the apertures to reach the same objective function value as the CG-DAO. The average aperture areas are 27% smaller for H-DAO than for CG-DAO leading to a slightly larger discrepancy between optimized and final dose. However, a dosimetric benefit remains. The H-DAO was successfully developed and applied to IMRT and MBRT. The faster convergence with number of apertures of the H-DAO compared to the CG-DAO allows to select a better compromise between plan quality and number of apertures.


Assuntos
Algoritmos , Radioterapia de Intensidade Modulada , Encéfalo , Elétrons , Cabeça
3.
Phys Med Biol ; 66(4): 045006, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413883

RESUMO

PURPOSE: To develop a novel treatment planning process (TPP) with simultaneous optimization of modulated photon, electron and proton beams for improved treatment plan quality in radiotherapy. METHODS: A framework for fluence map optimization of Monte Carlo (MC) calculated beamlet dose distributions is developed to generate treatment plans consisting of photon, electron and spot scanning proton fields. Initially, in-house intensity modulated proton therapy (IMPT) plans are compared to proton plans created by a commercial treatment planning system (TPS). A triple beam radiotherapy (TriB-RT) plan is generated for an exemplary academic case and the dose contributions of the three particle types are investigated. To investigate the dosimetric potential, a TriB-RT plan is compared to an in-house IMPT plan for two clinically motivated cases. Benefits of TriB-RT for a fixed proton beam line with a single proton field are investigated. RESULTS: In-house optimized IMPT are of at least equal or better quality than TPS-generated proton plans, and MC-based optimization shows dosimetric advantages for inhomogeneous situations. Concerning TriB-RT, for the academic case, the resulting plan shows substantial contribution of all particle types. For the clinically motivated case, improved sparing of organs at risk close to the target volume is achieved compared to IMPT (e.g. myelon and brainstem [Formula: see text] -37%) at cost of an increased low dose bath (healthy tissue V 10% +22%). In the scenario of a fixed proton beam line, TriB-RT plans are able to compensate the loss in degrees of freedom to substantially improve plan quality compared to a single field proton plan. CONCLUSION: A novel TPP which simultaneously optimizes photon, electron and proton beams was successfully developed. TriB-RT shows the potential for improved treatment plan quality and is especially promising for cost-effective single-room proton solutions with a fixed beamline in combination with a conventional linac delivering photon and electron fields.


Assuntos
Elétrons , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias Pélvicas/radioterapia , Imagens de Fantasmas , Fótons/uso terapêutico , Terapia com Prótons/normas , Planejamento da Radioterapia Assistida por Computador/normas , Humanos , Método de Monte Carlo , Terapia com Prótons/métodos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/normas
4.
Med Phys ; 47(12): 6519-6530, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33075168

RESUMO

MOTIVATION: Progress in the field of magnetic resonance (MR)-guided radiotherapy has triggered the need for fast and accurate dose calculation in presence of magnetic fields. The aim of this work is to satisfy this need by extending the macro Monte Carlo (MMC) method to enable dose calculation for photon, electron, and proton beams in a magnetic field. METHODS: The MMC method is based on the transport of particles in macroscopic steps through an absorber by sampling the relevant physical quantities from a precalculated database containing probability distribution functions. To enable MMC particle transport in a magnetic field, a transformation accounting for the Lorentz force is applied for each macro step by rotating the sampled position and direction around the magnetic field vector. The transformed position and direction distributions on local geometries are validated against full MC for electron and proton pencil beams. To enable photon dose calculation, an in-house MC algorithm is used for photon transport and interaction. Emerging secondary charged particles are passed to MMC for transport and energy deposition. The extended MMC dose calculation accuracy and efficiency is assessed by comparison with EGSnrc (photon and electron beams) and Geant4 (proton beam) calculated dose distributions of different energies and homogeneous magnetic fields for broad beams impinging on water phantoms with bone and lung inhomogeneities. RESULTS: The geometric transformation on the local geometries is able to reproduce the results of full MC for all investigated settings (difference in mean value and standard deviation <1%). Macro Monte Carlo calculated dose distributions in a homogeneous magnetic field are in agreement with EGSnrc and Geant4, respectively, with gamma passing rates >99.6% (global 2%, 2 mm and 10% threshold criteria) for all situations. MMC achieves a substantial efficiency gain of up to a factor of 21 (photon beam), 66 (electron beam), and 356 (proton beam) compared to EGSnrc or Geant4. CONCLUSION: Efficient and accurate dose calculation in magnetic fields was successfully enabled by utilizing the developed extended MMC transport method for photon, electron, and proton beams.


Assuntos
Radioterapia Guiada por Imagem , Algoritmos , Campos Magnéticos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
5.
Phys Med ; 78: 83-92, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32950017

RESUMO

PURPOSE: In the current era of MRI-linac radiotherapy, dose optimization with arbitrary dose distributions is a reality. For the first time, we present new and targeted experiments and modeling to aid in evaluating the potential dose improvements offered with an electron beam mode during MRI-linac radiotherapy. METHODS: Small collimated (1 cm diameter and 1.5 × 1.5 cm2 square) electron beams (6, 12 and 20 MeV) from a clinical linear accelerator (Varian Clinac 2100C) are incident perpendicular and parallel to the strong and localized magnetic fields (0-0.7 T) generated by a permanent magnet device. Gafchromic EBT3 film is placed inside a slab phantom to measure two-dimensional dose distributions. A benchmarked and comprehensive Monte Carlo model (Geant4) is established to directly compare with experiments. RESULTS: With perpendicular fields a 5% narrowing of the beam FWHM and a 10 mm reduction in the 15% isodose penetration is seen for the 20 MeV beam. In the inline setup the penumbral width is reduced by up to 20%, and a local central dose enhancement of 100% is observed. Monte Carlo simulations are in agreement with the measured dose distributions (2% or 2 mm). CONCLUSION: A new range of experiments have been performed to offer insight into how an electron beam mode could offer additional choices in MRI-linac radiotherapy. The work extends on historic studies to bring a successful unified experimental and Monte Carlo modeling approach for studying small field electron beam dosimetry inside magnetic fields. The results suggest further work, particularly on the inline magnetic field scenario.


Assuntos
Elétrons , Campos Magnéticos , Imageamento por Ressonância Magnética , Método de Monte Carlo , Aceleradores de Partículas
6.
Phys Med Biol ; 64(15): 155010, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31234149

RESUMO

Scanning small-angle x-ray scattering (SAXS) measurements were performed on 36 formalin-fixed breast tissue biopsies obtained from two patients. All samples contained microcalcifications of type II, i.e. formed by hydroxyapatite. We demonstrate the feasibility of classifying breast lesions by scanning SAXS of tissues containing microcalcifications with a resolution of 35 [Formula: see text]m [Formula: see text] 30 [Formula: see text]m. We report a characteristic Bragg peak found around q = 1.725 nm-1 that occurs primarily for malignant lesions. Such a clear SAXS fingerprint is potentially linked to structural changes of breast tissue and corresponds to dimensions of about 3.7 nm. This material property could be used as an early indicator of malignancy development, as it is readily assessed by SAXS. If this fingerprint is combined with other known SAXS features, which also indicate the level of malignancy, such as lipid spacing and collagen periodicity, it could complement traditional pathology-based analyses. To confirm the SAXS-based classification, a histopathological workup and a gold standard histopathological diagnosis were conducted to determine the malignancy level of the lesions. Our aim is to report this SAXS fingerprint, which is clearly related to malignant breast lesions. However, any further conclusion based on our dataset is limited by the low number of patients and samples. Running a broad study to increase the number of samples and patients is of great importance and relevance for the breast-imaging community.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Radiografia/métodos , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Mama/patologia , Feminino , Humanos , Radiografia/normas , Cintilografia
7.
Urology ; 123: 75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598227
8.
Urology ; 123: 70-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076939

RESUMO

OBJECTIVE: To evaluate the accuracy of semiautomated segmentation of urinary stone size in computed tomography (CT) compared with manual measurement. MATERIALS AND METHODS: A total of 103 patients (32f, 71m ; mean age 52 years±18 that were diagnosed with urolithiasis and collected stones received standardized ex vivo CT-scans and radiography of the stones. Stone size was segmented semiautomatically using commercial software (syngo.via, Siemens, Germany) and compared with manual caliper measurement on digital radiography. RESULTS: Mean size was 4.4 mm in CT and 4.6 mm in radiography. Depending on number of stones analyzed per patient, estimation of stone size showed moderate to excellent correlation for both methods. There was no significant difference in overall size measurement. CONCLUSION: Semiautomatic segmentation of urinary stone size in CT is possible and reduces measurement errors, allowing more precise estimation especially for smaller concrements. Neighboring stones may hamper segmentation of stone size.


Assuntos
Tomografia Computadorizada por Raios X , Cálculos Urinários/diagnóstico por imagem , Cálculos Urinários/patologia , Precisão da Medição Dimensional , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Intensificação de Imagem Radiográfica , Reprodutibilidade dos Testes , Estudos Retrospectivos
9.
J Appl Crystallogr ; 51(Pt 5): 1378-1386, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30279640

RESUMO

In most cases, the analysis of small-angle and wide-angle X-ray scattering (SAXS and WAXS, respectively) requires a theoretical model to describe the sample's scattering, complicating the interpretation of the scattering resulting from complex heterogeneous samples. This is the reason why, in general, the analysis of a large number of scattering patterns, such as are generated by time-resolved and scanning methods, remains challenging. Here, a model-free classification method to separate SAXS/WAXS signals on the basis of their inflection points is introduced and demonstrated. This article focuses on the segmentation of scanning SAXS/WAXS maps for which each pixel corresponds to an azimuthally integrated scattering curve. In such a way, the sample composition distribution can be segmented through signal classification without applying a model or previous sample knowledge. Dimensionality reduction and clustering algorithms are employed to classify SAXS/WAXS signals according to their similarity. The number of clusters, i.e. the main sample regions detected by SAXS/WAXS signal similarity, is automatically estimated. From each cluster, a main representative SAXS/WAXS signal is extracted to uncover the spatial distribution of the mixtures of phases that form the sample. As examples of applications, a mudrock sample and two breast tissue lesions are segmented.

10.
Med Phys ; 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29992574

RESUMO

PURPOSE: The purpose of this study was to develop a treatment technique for dynamic mixed beam radiotherapy (DYMBER) utilizing increased degrees of freedom (DoF) of a conventional treatment unit including different particle types (photons and electrons), intensity and energy modulation and dynamic gantry, table, and collimator rotations. METHODS: A treatment planning process has been developed to create DYMBER plans combining photon dynamic trajectories (DTs) and step and shoot electron apertures collimated with the photon multileaf collimator (pMLC). A gantry-table path is determined for the photon DTs with minimized overlap of the organs at risk (OARs) with the target. In addition, an associated dynamic collimator rotation is established with minimized area between the pMLC leaves and the target contour. pMLC sequences of photon DTs and electron pMLC apertures are then simultaneously optimized using direct aperture optimization (DAO). Subsequently, the final dose distribution of the electron pMLC apertures is calculated using the Swiss Monte Carlo Plan (SMCP). The pMLC sequences of the photon DTs are then re-optimized with a finer control point resolution and with the final electron dose distribution taken into account. Afterwards, the final photon dose distribution is calculated also using the SMCP and summed together with the one of the electrons. This process is applied for a brain and two head and neck cases. The resulting DYMBER dose distributions are compared to those of dynamic trajectory radiotherapy (DTRT) plans consisting only of photon DTs and clinically applied VMAT plans. Furthermore, the deliverability of the DYMBER plans is verified in terms of dosimetric accuracy, delivery time and collision avoidance. For this purpose, The DYMBER plans are delivered to Gafchromic EBT3 films placed in an anthropomorphic head phantom on a Varian TrueBeam linear accelerator. RESULTS: For each case, the dose homogeneity in the target is similar or better for DYMBER compared to DTRT and VMAT. Averaged over all three cases, the mean dose to the parallel OARs is 16% and 28% lower, D2% to the serial OARs is 17% and 37% lower and V10% to normal tissue is 12% and 4% lower for the DYMBER plans compared to the DTRT and VMAT plans, respectively. The DYMBER plans are delivered without collision and with a 4-5 min longer delivery time than the VMAT plans. The absolute dose measurements are compared to calculation by gamma analysis using 2% (global)/2 mm criteria with passing rates of at least 99%. CONCLUSIONS: A treatment technique for DYMBER has been successfully developed and verified for its deliverability. The dosimetric superiority of DYMBER over DTRT and VMAT indicates utilizing increased DoF to be the key to improve brain and head and neck radiation treatments in future.

11.
Phys Med Biol ; 63(2): 025017, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29214984

RESUMO

Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.


Assuntos
Elétrons , Método de Monte Carlo , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Radiometria/métodos , Dosagem Radioterapêutica
12.
Phys Med Biol ; 63(1): 015015, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29256450

RESUMO

This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.


Assuntos
Método de Monte Carlo , Neoplasias/cirurgia , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Radiometria , Dosagem Radioterapêutica
13.
Phys Med Biol ; 62(14): 5840-5860, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28467321

RESUMO

The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.


Assuntos
Elétrons , Fótons/uso terapêutico , Radioterapia de Intensidade Modulada/métodos , Humanos , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Fatores de Tempo
14.
Opt Express ; 25(2): 654-669, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28157955

RESUMO

X-ray microtomography is a widely applied tool for noninvasive structure investigations. The related detectors are usually based on a scintillator screen for the fast in situ conversion of an X-ray image into an optical image. Spatial resolution of the latter is fundamentally diffraction limited. In this work, we introduce stimulated scintillation emission depletion (SSED) X-ray imaging where, similar to stimulated emission depletion (STED) microscopy, a depletion beam is applied to the scintillator screen to overcome the diffraction limit. The requirements for the X-ray source, the X-ray flux, the scintillator screen, and the STED beam were evaluated. Fundamental spatial resolution limits due to the spread of absorbed X-ray energy were estimated with Monte Carlo simulations. The SSED proof-of-concept experiments demonstrated 1) depletion of X-ray excited scintillation, 2) partial confinement of scintillating regions to sub-diffraction sized volumes, and 3) improvement of the imaging contrast by applying SSED.

15.
Opt Express ; 25(2): 1251-1261, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28158009

RESUMO

Scintillator-based X-ray imaging is a powerful technique for noninvasive real-space microscopic structural investigation such as synchrotron-based computed tomography. The resolution of an optical image formed by scintillation emission is fundamentally diffraction limited. To overcome this limit, stimulated scintillation emission depletion (SSED) X-ray imaging, based on stimulated emission depletion (STED) microscopy, has been recently developed. This technique imposes new requirements on the scintillator material: efficient de-excitation by the STED-laser and negligible STED-laser excited luminescence. In this work, luminescence depletion was measured in several commonly-used Ce3+, Tb3+, and Eu3+ - doped scintillators using various STED lasers. The depletion of Tb3+ and Eu3+ via 4f-4f transitions was more efficient (Ps = 8…19 mW) than Ce3+ depletion via 5d-4f transitions (Ps = 43…45 mW). Main origins of STED-laser excited luminescence were one- and two-photon excitation, and scintillator impurities. LSO:Tb scintillator and a 628 nm cw STED-laser is the most promising combination for SSED satisfying the above-mentioned requirements.

16.
J Synchrotron Radiat ; 24(Pt 1): 205-219, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009560

RESUMO

This paper introduces two novel strategies for iterative reconstruction of full interior tomography (FINT) data, i.e. when the field of view is entirely inside the object support and knowledge of the object support itself or the attenuation coefficients inside specific regions of interest are not available. The first approach is based on data edge-padding. The second technique creates an intermediate virtual sinogram, which is, then, reconstructed by a standard iterative algorithm. Both strategies are validated in the framework of the alternate direction method of multipliers plug-and-play with gridding projectors that provide a speed-up of three orders of magnitude with respect to standard operators implemented in real space. The proposed methods are benchmarked on synchrotron-based X-ray tomographic microscopy datasets of mouse lung alveoli. Compared with analytical techniques, the proposed methods substantially improve the reconstruction quality for FINT underconstrained datasets, facilitating subsequent post-processing steps.

17.
J Synchrotron Radiat ; 22(2): 446-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25723946

RESUMO

Handwritten characters in administrative antique documents from three centuries have been detected using different synchrotron X-ray imaging techniques. Heavy elements in ancient inks, present even for everyday administrative manuscripts as shown by X-ray fluorescence spectra, produce attenuation contrast. In most cases the image quality is good enough for tomography reconstruction in view of future applications to virtual page-by-page `reading'. When attenuation is too low, differential phase contrast imaging can reveal the characters from refractive index effects. The results are potentially important for new information harvesting strategies, for example from the huge Archivio di Stato collection, objective of the Venice Time Machine project.


Assuntos
Documentação/história , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Manuscritos como Assunto/história , História Antiga , Humanos , Tinta , Itália , Refratometria , Redação/história
18.
Med Phys ; 41(12): 121711, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25471958

RESUMO

PURPOSE: A beamlet based direct aperture optimization (DAO) for modulated electron radiotherapy (MERT) using photon multileaf collimator (pMLC) shaped electron fields is developed and investigated. METHODS: The Swiss Monte Carlo Plan (SMCP) allows the calculation of dose distributions for pMLC shaped electron beams. SMCP is interfaced with the Eclipse TPS (Varian Medical Systems, Palo Alto, CA) which can thus be included into the inverse treatment planning process for MERT. This process starts with the import of a CT-scan into Eclipse, the contouring of the target and the organs at risk (OARs), and the choice of the initial electron beam directions. For each electron beam, the number of apertures, their energy, and initial shape are defined. Furthermore, the DAO requires dose-volume constraints for the structures contoured. In order to carry out the DAO efficiently, the initial electron beams are divided into a grid of beamlets. For each of those, the dose distribution is precalculated using a modified electron beam model, resulting in a dose list for each beamlet and energy. Then the DAO is carried out, leading to a set of optimal apertures and corresponding weights. These optimal apertures are now converted into pMLC shaped segments and the dose calculation for each segment is performed. For these dose distributions, a weight optimization process is launched in order to minimize the differences between the dose distribution using the optimal apertures and the pMLC segments. Finally, a deliverable dose distribution for the MERT plan is obtained and loaded back into Eclipse for evaluation. For an idealized water phantom geometry, a MERT treatment plan is created and compared to the plan obtained using a previously developed forward planning strategy. Further, MERT treatment plans for three clinical situations (breast, chest wall, and parotid metastasis of a squamous cell skin carcinoma) are created using the developed inverse planning strategy. The MERT plans are compared to clinical standard treatment plans using photon beams and the differences between the optimal and the deliverable dose distributions are determined. RESULTS: For the idealized water phantom geometry, the inversely optimized MERT plan is able to obtain the same PTV coverage, but with an improved OAR sparing compared to the forwardly optimized plan. Regarding the right-sided breast case, the MERT plan is able to reduce the lung volume receiving more than 30% of the prescribed dose and the mean lung dose compared to the standard plan. However, the standard plan leads to a better homogeneity within the CTV. The results for the left-sided thorax wall are similar but also the dose to the heart is reduced comparing MERT to the standard treatment plan. For the parotid case, MERT leads to lower doses for almost all OARs but to a less homogeneous dose distribution for the PTV when compared to a standard plan. For all cases, the weight optimization successfully minimized the differences between the optimal and the deliverable dose distribution. CONCLUSIONS: A beamlet based DAO using multiple beam angles is implemented and successfully tested for an idealized water phantom geometry and clinical situations.


Assuntos
Neoplasias/radioterapia , Radioterapia de Intensidade Modulada/métodos , Fenômenos Biofísicos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Feminino , Humanos , Método de Monte Carlo , Neoplasias/diagnóstico por imagem , Órgãos em Risco , Neoplasias Parotídeas/diagnóstico por imagem , Neoplasias Parotídeas/radioterapia , Neoplasias Parotídeas/secundário , Imagens de Fantasmas , Fótons/uso terapêutico , Radiografia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Alta Energia , Radioterapia de Intensidade Modulada/estatística & dados numéricos , Neoplasias Torácicas/diagnóstico por imagem , Neoplasias Torácicas/radioterapia
19.
Opt Express ; 22(22): 27257-69, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401876

RESUMO

For dynamic samples and/or for simple ease-of-use experiments, single-image phase contrast tomography is a very effective method for the 3D visualization of materials which would otherwise be indiscernible in attenuation based x-ray imaging. With binary samples (e.g. air-material) and monochromatic wavefields a transport-of-intensity (TIE)-based phase retrieval algorithm is known to retrieve accurate quantitative maps of the phase distribution. For mixed material samples and/or white beam radiation the algorithm can still produce useful qualitative tomographic reconstructions with significantly improved area contrast. The stability of the algorithm comes with a recognized associated loss of spatial resolution due to its essential behaviour as a low-pass filter. One possible answer to this is an image fusion technique that merges the slices reconstructed from raw phase contrast images and those after phase retrieval, where the improved contrast may be acquired without the associated loss of high-frequency information. We present this technique as a simple few-parameter Fourier method, which is easily tunable and highly compatible with current reconstruction steps.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia/métodos , Algoritmos , Ligas/química , Módulo de Elasticidade , Análise de Fourier , Poaceae/anatomia & histologia
20.
J Synchrotron Radiat ; 21(Pt 6): 1319-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25343801

RESUMO

Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40-100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...